Robonaut 2, or R2, was developed and built by NASA and General Motors via a Space Act Agreement. Using the latest technology, it's a new humanoid robot capable of working side-by-side with people. Using leading edge control, sensor and vision technologies, future R-2s could assist astronauts during hazardous space missions and help GM build safer cars and plants.
The two organizations, with the help of engineers from Oceaneering Space Systems of Houston, developed and built the current iteration of Robonaut. Robonaut 2, or R2, is a faster, more dexterous and more technologically advanced robot. Its capabilities include the use of fully-functional hands and arms to do work beyond the scope of prior humanoid machines.
Like its predecessor Robonaut 1, R2 is capable of handling a wide range of tools and interfaces, but R2 is a significant advancement over its predecessor. R2 is capable of speeds more than four times faster than R1, is more compact, is more dexterous, and includes a deeper and wider range of sensing.
Advanced technology spans the entire R2 system and includes: optimized overlapping dual arm dexterous workspace, series elastic joint technology, extended finger and thumb travel, miniaturized 6-axis load cells, redundant force sensing, ultra-high speed joint controllers, extreme neck travel, and high resolution camera and IR systems. The dexterity of R2 allows it to use the same tools that astronauts use and removes the need for specialized tools just for robots.
One advantage of a humanoid design is that Robonaut can take over simple, repetitive, or especially dangerous tasks on places such as the International Space Station.
The two organizations, with the help of engineers from Oceaneering Space Systems of Houston, developed and built the current iteration of Robonaut. Robonaut 2, or R2, is a faster, more dexterous and more technologically advanced robot. Its capabilities include the use of fully-functional hands and arms to do work beyond the scope of prior humanoid machines.
Like its predecessor Robonaut 1, R2 is capable of handling a wide range of tools and interfaces, but R2 is a significant advancement over its predecessor. R2 is capable of speeds more than four times faster than R1, is more compact, is more dexterous, and includes a deeper and wider range of sensing.
Advanced technology spans the entire R2 system and includes: optimized overlapping dual arm dexterous workspace, series elastic joint technology, extended finger and thumb travel, miniaturized 6-axis load cells, redundant force sensing, ultra-high speed joint controllers, extreme neck travel, and high resolution camera and IR systems. The dexterity of R2 allows it to use the same tools that astronauts use and removes the need for specialized tools just for robots.
One advantage of a humanoid design is that Robonaut can take over simple, repetitive, or especially dangerous tasks on places such as the International Space Station.
It seems like robot will replace human being...
BalasHapus